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Abstract

To master a discipline such as algebra or physics, students must acquire
a set of cognitive skills. Traditionally, educators and domain experts use
intuition to determine what these skills are and then select practice exer-
cises to hone a particular skill. We propose a technique that uses student
performance data to automatically discover the skills needed in a disci-
pline. The technique assigns a latent skill to each exercise such that a
student’s expected accuracy on a sequence of same-skill exercises improves
monotonically with practice. Rather than discarding the skills identified by
experts, our technique incorporates a nonparametric prior over the exercise-
skill assignments that is based on the expert-provided skills and a weighted
Chinese restaurant process. We test our technique on datasets from five
different intelligent tutoring systems designed for students ranging in age
from middle school through college. We obtain two surprising results. First,
in three of the five datasets, the skills inferred by our technique support
significantly improved predictions of student performance over the expert-
provided skills. Second, the expert-provided skills have little value: our
technique predicts student performance nearly as well when it ignores the
domain expertise as when it attempts to leverage it. We discuss expla-
nations for these surprising results and also the relationship of our skill-
discovery technique to alternative approaches.

1 Introduction

With the advent of massively open online courses (MOOCs) and online learning platforms
such as Khan Academy and Reasoning Mind, large volumes of data are collected from
students as they solve exercises, acquire cognitive skills, and achieve a conceptual under-
standing. A student’s data provides clues as to his or her knowledge state—the specific facts,
concepts, and operations that the student has mastered, as well as the depth and robustness
of the mastery. Knowledge state is dynamic and evolves as the student learns and forgets.

Tracking a student’s time-varying knowledge state is essential to an intelligent tutoring sys-
tem. Knowledge state pinpoints the student’s strengths and deficiencies and helps determine
what material the student would most benefit from studying or practicing. In short, efficient
and effective personalized instruction requires inference of knowledge state [20, 25].

Knowledge state can be decomposed into atomic elements, often referred to as knowledge
components [7, 13], though we prefer the term skills. Skills include retrieval of specific facts,
e.g., the translation of ‘dog’ into Spanish is perro, as well as operators and rules in a domain,
e.g., dividing each side of an algebraic equation by a constant to transform 3(x + 2) = 15
into x + 2 = 5, or calculating the area of a circle with radius r by applying the formula
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πr2. When an exercise or question is posed, students must apply one or more skills, and
the probability of correctly applying a skill is dependent on their knowledge state.

To predict a student’s performance on an exercise, we thus must: (1) determine which skill
or skills are required to solve the exercise, and (2) infer the student’s knowledge state for
those skills. With regard to (1), the correspondence between exercises and skills, which
we will refer to as an expert labeling, has historically been provided by human experts.
Automated techniques have been proposed, although they either rely on an expert labeling
which they then refine [5] or treat the student knowledge state as static [3]. With regard
to (2), various dynamical latent state models have been suggested to infer time-varying
knowledge state given an expert labeling. A popular model, Bayesian knowledge tracing
assumes that knowledge state is binary—the skill is either known or not known [6]. Other
models posit that knowledge state is continuous and evolves according to a linear dynamical
system [21].

Only recently have methods been suggested that simultaneously address (1) and (2), and
which therefore perform skill discovery. Nearly all of this work has involved matrix factor-
ization [24, 22, 14]. Consider a student × exercise matrix whose cells indicate whether a
student has answered an exercise correctly. Factorization leads to a vector for each student
characterizing the degree to which the student has learned each of Nskill skills, and a vec-
tor for each exercise characterizing the degree to which that exercise requires each of Nskill

skills. Modeling student learning presents a particular challenge because of the temporal
dimension: students’ skills improve as they practice. Time has been addressed either via
dynamical models of knowledge state or by extending the matrix into a tensor whose third
dimension represents time.

We present an approach to skill discovery that differs from matrix factorization approaches
in three respects. First, rather than ignoring expert labeling, we adopt a Bayesian for-
mulation in which the expert labels are incorporated into the prior. Second, we explore a
nonparametric approach in which the number of skills is determined from the data. Third,
rather than allowing an exercise to depend on multiple skills and to varying degrees, we make
a stronger assumption that each exercise depends on exactly one skill in an all-or-none fash-
ion. With this assumption, skill discovery is equivalent to the partitioning of exercises into
disjoint sets. Although this strong assumption is likely to be a simplification of reality,
it serves to restrict the model’s degrees of freedom compared to factorization approaches
in which each student and exercise is assigned an Nskill-dimensional vector. Despite the
application of sparsity and nonnegativity constraints, the best models produced by matrix
factorization have had low-dimensional skill spaces, specifically, Nskill = 2. We conjecture
that the low dimensionality is not due to the domains being modeled requiring only 2 skills,
but rather to overfitting for Nskill > 2. With our approach of partitioning exercises into
disjoint skill sets, we can afford Nskill � 2 without giving the model undue flexibility. We
are aware of one recent approach to skill discovery [8, 9] which shares our assumption that
each exercise depends on a single skill. However, it differs from our approach in that it does
not try to exploit expert labels and presumes a fixed number of skills. We contrast our work
to various alternative approaches toward the end of this paper.

2 A nonparametric model for automatic skill discovery

We now introduce a generative probabilistic model of student problem-solving in terms of
two components: (1) a prior over the assignment of exercises to skills, and (2) the likelihood
of a sequence of responses produced by a student on exercises requiring a common skill.

2.1 Weighted CRP: A prior on skill assignments

Any instructional domain (e.g., algebra, geometry, physics) has an associated set of exercises
which students must practice to attain domain proficiency. We are interested in the common
situation where an expert has identified, for each exercise, a specific skill which is required
for its solution (the expert labeling). It may seem unrealistic to suppose that each exercise
requires no more than one skill, but in intelligent tutoring systems [7, 13], complex exercises
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(e.g., algebra word problems) are often broken down into a series of steps which are small
enough that they could plausibly require only one skill (e.g., adding a constant to both
sides of an algebraic equation). Thus, when we use the term ‘exercise’, in some domains we
are actually referring to a step of a compound exercise. In other domains (e.g., elementary
mathematics instruction), the exercises are designed specifically to tap what is being taught
in a lesson and are thus narrowly focused.

We wish to exploit the expert labeling to design a nonparametric prior over assignments
of exercises to skills—hereafter, skill assignments—and we wish to vary the strength of the
bias imposed by the expert labeling. With a strong bias, the prior would assign nonzero
probability to only the expert labeling. With no bias, the expert labeling would be no more
likely than any other. With an intermediate bias, which provides soft constraints on the
skill assignment, a suitable model might improve on the expert labeling.

We considered various methods, including fragmentation-coagulation processes [23] and the
distance-dependent Chinese restaurant process [4]. In this article, we describe a straightfor-
ward approach based on the Chinese restaurant process (CRP) [1], which induces a distri-
bution over partitions. The CRP is cast metaphorically in terms of a Chinese restaurant in
which each entering customer chooses a table at which to sit. Denoting the table at which
customer i sits as Yi, customer i can take a seat at an occupied table y with P (Yi = y) ∝ ny
or at an empty table with P (Yi = Ntable + 1) ∝ α, where Ntable is the number of occupied
tables and ny is the number of customers currently seated at table y.

The weighted Chinese restaurant process (WCRP) [10] extends this metaphor by suppos-
ing that customers each have a fixed affiliation and are biased to sit at tables with other
customers having similar affiliations. The WCRP is nothing more than the posterior over
table assignments given a CRP prior and a likelihood function based on affiliations. In the
mapping of the WCRP to our domain, customers correspond to exercises, tables to distinct
skills, and affiliations to expert labels. The WCRP thus partitions the exercises into groups
sharing a common skill, with a bias to assign the same skill to exercises having the same
expert label.

The WCRP is specified in terms of a set of parameters θ ≡ {θ1, . . . , θNtable
}, where θy

represents the affiliation associated with table y. In our domain, the affiliation corresponds
to one of the expert labels: θy ∈ {1, . . . , Nskill}. From a generative modeling perspective,
the affiliation of a table influences the affiliations of each customer seated at the table. Using
Xi to denote the affiliation of customer i—or equivalently, the expert label associated with
exercise i—we make the generative assumption:

P (Xi = x|Yi = y,θ) ∝ βδx,θy + 1− β ,

where δ is the Kronecker delta and β is the previously mentioned bias. With β = 0, a
customer is equally likely to have any affiliation; with β = 1, all customers at a table will
have the table’s affiliation. With uniform priors on θy, the conditional distribution on θy is:

P (θy|X(y)) ∝ (1− β)−n
θy
y

where X(y) is the set of affiliations of customers seated at table y and nay ≡
∑
Xi∈X(y) δxi,a

is the number of customers at table y with affiliation a.

Marginalizing over θ, the WCRP specifies a distribution over table assignments for a new
customer: an occupied table y ∈ {1, . . . , Ntable} is chosen with probability

P (Yi = y|Xi,X
(y)) ∝ ny

1 + β(κxiy − 1)

1 + β(Nskill
−1 − 1)

, with

κay ≡
(1− β)−n

a
y∑Nskill

ã=1 (1− β)−n
ã
y

.

(1)

κay is a softmax function that tends toward 1 if a is the most common affiliation among
customers at table y, and tends toward 0 otherwise. In the WCRP, an empty table Ntable+1
is selected with probability

P (Yi = Ntable + 1) ∝ α. (2)
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We choose to treat α not as a constant but rather define α ≡ α′(1 − β) where α′ becomes
the free parameter of the model that modulates the expected number of occupied tables,
and the term 1 − β serves to give the model less freedom to assign new tables when the
affiliation bias is high. (We leave the constant in the denominator of Equation 1 so that α
has the same interpretation regardless of β.)

For β = 0, the WCRP reduces to the CRP and expert labels are ignored. Although the
WCRP is undefined for β = 1, it is defined in the limit β → 1, and it produces a seating
arrangement equivalent to the expert labels with probability 1. For intermediate β, the
expert labels serve as an intermediate constraint. For any β, the WCRP seating arrangement
specifies a skill assignment over exercises.

2.2 BKT: A theory of human skill acquisition

In the previous section, we described a prior over skill assignments. Given an assignment,
we turn to a theory of the temporal dynamics of human skill acquisition. Suppose that a
particular student practices a series of exercises, {e1, e2, . . . , et, . . . , eT }, where the subscript
indicates order and each exercise et depends on a corresponding skill, st.

1 We assume that
whether or not a student responds correctly to exercise et depends solely on the student’s
mastery of st. We further assume that when a student works on et, it has no effect on
the student’s mastery of other skills s̃, s̃ 6= st. These assumptions—adopted by nearly
all past models of student learning—allow us to consider each skill independently of the
others. Thus, for skill s̃, we can select its subset of exercises from the sequence, es̃ = {et |
st = s̃}, preserving order in the sequence, and predict whether the student will answer
each exercise correctly or incorrectly. Given the uncertainty in such predictions, models
typically predict the joint likelihood over the sequence of responses, P (R1, . . . , R|es̃|), where
the binary random variable Rt indicates the correctness of the response to et.

The focus of our research is not on developing novel models of skill acquisition. Instead,
we incorporate a simple model that is a mainstay of the field, Bayesian knowledge tracing
(BKT) [6]. BKT is based on a theory of all-or-none human learning [2] which postulates
that a student’s knowledge state following trial t, Kt, is binary: 1 if the skill has been
mastered, 0 otherwise. BKT is a hidden Markov model (HMM) with internal state Kt and
emissions Rt.

Because BKT is typically used to model practice over brief intervals, the model assumes
no forgetting, i.e., K cannot transition from 1 to 0. This assumption constrains the time-
varying knowledge state: it can make at most one transition from 0 to 1 over the sequence
of trials. Consequently, the {Kt} can be replaced by a single latent variable, T , that denotes
the trial following which a transition is made, leading to the BKT generative model:

P (T = t|λL, λM ) =

{
λL if t = 0

(1− λL)λM (1− λM )t−1 if t > 0
(3)

P (Rt = 1|λG, λS , T ) =

{
λG if i ≤ T
1− λS otherwise,

(4)

where λL is the probability that a student has mastered the skill prior to performing the
first exercise, λM is the transition probability from the not-mastered to mastered state,
λG is the probability of correctly guessing the answer prior to skill mastery, and λS is the
probability of answering incorrectly due to a slip following skill mastery.

Although we have chosen to model student learning with BKT, any other probabilistic
model of student learning could be used in conjunction with our approach to skill discov-
ery, including more sophisticated variants of BKT [11] or models of knowledge state with
continuous dynamics [21]. Further, our approach does not require BKT’s assumption that
learning a skill is conditionally independent of the practice history of other skills. However,
the simplicity of BKT allows one to conduct modeling on a relatively large scale.

1To tie this notation to the notation of the previous section, st ≡ yet , i.e., the table assignments
of the WCRP correspond to skills, and exercise et is seated at table yet . Note that i in the previous
section was used as an index over distinct exercises, whereas t in this section is used as an index
over trials. The same exercise may be presented multiple times.
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3 Implementation

We perform posterior inference through Markov chain Monte Carlo (MCMC) sampling.
The conditional probability for Yi given the other variables is proportional to the product
of the WCRP prior term and the likelihood of each student’s response sequence. The prior
term is given by Equations 1 and 2, where by exchangeability we can take Yi to be the
last customer to enter the restaurant and where we analytically marginalize θ. For an
existing table, the likelihood is given by the BKT HMM emission sequence probability. For
a new table, we must add an extra step to calculating the emission sequence probability
because the BKT parameters do not have conjugate priors. We used Algorithm 8 from [16],
which effectively produces a Monte Carlo approximation to the intractable marginal data
likelihood, integrating out over the BKT parameters that could be drawn for the new table.

For lack of conjugacy and any strong prior knowledge, we give each table’s λL, λM , and λS
independent uniform priors on [0, 1]. Because we wish to interpret BKT’s K = 1 state as a
“learned” state, we parameterize λG as being a fraction of 1− λS , where the fraction has a
uniform prior on [0, 1]. We give log(1−β) a uniform prior on [−5, 0] based on the simulations
described in Section 4.1, and α′ is given an improper uniform prior with support on α′ > 0.
Because of the lack of conjugacy, we explicitly represent each table’s BKT parameters during
sampling. In each iteration of the sampler, we update the table assignments of each exercise
and then apply five axis-aligned slice sampling updates to each table’s BKT parameters and
to the hyperparameters β and α′ [17].

For all simulations, we run the sampler for 200 iterations and discard the first 100 as the
burn-in period. The seating arrangement is initialized to the expert-provided skills; all other
parameters are initialized by sampling from the generative model. We use the post burn-in
samples to estimate the expected posterior probability of a student correctly responding in
a trial, integrating out over uncertainty in all skill assignments, BKT parameterizations,
and hyperparameters. We explored using more iterations and a longer burn-in period but
found that doing so did not yield appreciable increases in training or test data likelihoods.

4 Simulations

4.1 Sampling from the WCRP

We generated synthetic exercise-skill assignments via a draw from a CRP prior with α = 3
and Nexercise = 100. Using these assignments as both the ground-truth and expert labels, we
then simulated draws from the WCRP to determine the effect of β (the expert labeling bias)
and α′ (concentration scaling parameter; see Equation 2) on the model’s behavior. Figure 1a
shows the reconstruction score, a measure of similarity between the induced assignment and
the true labels. This score is the difference between (1) the proportion of pairs of exercises
that belong to the same true skill that are assigned to the same recovered skill, and (2)
the proportion of pairs of exercises that belong to different true skills that are assigned to
different recovered skills. The score is in [0, 1], with 0 indicating no better than a chance
relationship to the true labels, and 1 indicating the true labels are recovered exactly. The
reported score is the mean over replications of the simulation and MCMC samples. As β
increases, the recovered skills better approximate the expert (true) skills, independent of
α′. Figure 1b shows the expected interaction between α′ and β on the number of occupied
tables (induced skills): only when the bias is weak does α′ have an effect.

4.2 Skill recovery from synthetic student data

We generated data for Nstudent synthetic students responding to Nexercise exercises pre-
sented in a random order for each student. Using a draw from the CRP prior with α = 3,
we generated exercise-skill assignments. For each skill, we generated sequences of student
correct/incorrect responses via BKT, with parameters sampled from plausible distributions:
λL ∼ Uniform(0, 1), λM ∼ Beta(10, 30), λG ∼ Beta(1, 9), and λS ∼ Beta(1, 9).

Figure 1c shows the model’s reconstruction of true skills for 24 replications of the simulation
with Nstudent = 100 and Nexercise = 200, varying β, providing a set of expert skill labels
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Figure 1: (a,b) Effect of varying expert labeling bias (β) and α′ on sampled skill assignments
from a WCRP; (c) Effect of expert labels and β on the full model’s reconstruction of the
true skills from synthetic data

# # # # skills # skills β
source dataset students exercises trials (expert) (WCRP) (WCRP)

PSLC DataShop [12] fractions game 51 179 4,349 45 7.9 0.886
PSLC DataShop [12] physics tutor 66 4,816 110,041 652 49.4 0.947
PSLC DataShop [12] engineering statics 333 1,223 189,297 156 99.2 0.981

[15] Spanish vocabulary 182 409 578,726 221 183 0.996
PSLC DataShop [12] geometry tutor 59 139 5,104 18 19.7 0.997

Table 1: Five student performance datasets used in simulations

that were either the true labels or a permutation of the true labels. The latter conveys no
information about the true labels. The most striking feature of the result is that the model
does an outstanding job of reconstructing the true labeling whether the expert labels are
correct or not. Only when the bias β is strong and the expert labels are erroneous does the
model’s reconstruction performance falter. The bottom line is that a good expert labeling
can help, whereas a bad expert labeling should be no worse than no expert-provided labels.

In a larger simulation, we systematically varied Nstudent ∈ {50, 100, 150, 200}, Nexercise ∈
{100, 200, 300}, and assigned the exercises to one of Nskill ∈ {10, 20, 30} skills via uniform
multinomial sampling. Figure 2 shows the result from 30 replications of the simulation
using expert labels that were either true or permuted (left and right panels, respectively).
With a good expert labeling, skill reconstruction is near perfect with Nstudent ≥ 100 and an
Nexercise : Nskill ratio of at least 10. With a bad expert labeling, more data is required to
obtain accurate reconstructions, say, Nstudent ≥ 200. As one would expect, a helpful expert
labeling can overcome noisy or inadequate data.

4.3 Evaluation of student performance data

We ran simulations on five student performance datasets (Table 1). The datasets varied
in the number of students, exercises, and expert skill labels; the students in the datasets
ranged in age from middle school to college. Each dataset consists of student identifiers,
exercise identifiers, trial numbers, and binary indicators of response correctness from stu-
dents undergoing variable-length sequences of exercises over time.2 Exercises may appear
in different orders for each student and may occur multiple times for a given student.

We compared a set of models which we will describe shortly. For each model, we ran ten
replications of five-fold cross validation on each dataset. In each replication, we randomly
partitioned the set of all students into five equally sized disjoint subsets. In each replication-
fold, we collected posterior samples using our MCMC algorithm given the data recorded for
students in four of the five subsets. We then used the samples to predict the response

2For the DataShop datasets, exercises were identified by concatenating what they call the prob-
lem hierarchy, problem name, and the step name columns. Expert-provided skill labels were iden-
tified by concatenating the problem hierarchy column with the skill column following the same
practice as in [19, 18]. The expert skill labels infrequently associate an exercise with multiple skills.
For such exercises, we treat the combination of skills as one unique skill.
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Figure 2: Effect of expert labels, Nstudent, Nexercise, and Nskill on the model’s reconstruction
of the true skills from synthetic data

sequences (correct vs. incorrect) of the remaining students. On occasion, students in the
test set were given exercises that had not appeared in the training set. In those cases, the
model used samples from Equations 1-2 to predict the new exercises’ skill assignments.

The models we compare differ in how skills are assigned to exercises. However, every model
uses BKT to predict student performance given the skill assignments. Before presenting
results from the models, we first need to verify the BKT assumption that students improve
on a skill over time. We compared BKT to a baseline model which assumes a stationary
probability of a correct response for each skill. Using the expert-provided skills, BKT
achieves a mean 11% relative improvement over the baseline model across the five datasets.
Thus, BKT with expert-provided skills is sensitive to the temporal dynamics of learning.

To evaluate models, we use BKT to predict the test students’ data given the model-specified
skill assignment. We calculated several prediction-accuracy metrics, including RMSE and
mean log loss. We report area under the ROC curve (AUC), though all metrics yield the
same pattern of results. Figure 3 shows the mean AUC, where larger AUC values indicate
better performance. Each graph is a different dataset. The five colored bars represent
alternative approaches to determining the exercise-skill assignments. LFA uses skills from
Learning Factors Analysis, a semi-automated technique that refines expert-provided skills
[5]; LFA skills are available for only the Fractions and Geometry datasets. Single assigns
the same skill to all exercises. Exercise specific assigns a different skill to each exercise.
Expert uses the expert-provided skills. WCRP(0) uses the WCRP with no bias toward
the expert-provided skills, i.e., β = 0, which is equivalent to a CRP. WCRP(β) is our
technique with the level of bias inferred from the data.

The performance of expert is unimpressive. On Fractions, expert is worse than the single
baseline. On Physics and Statics, expert is worse than the exercise-specific baseline.
WCRP(β) is consistently better than both the single and exercise-specific baselines
across all five datasets. WCRP(β) also outperforms expert by doing significantly better
on three datasets and equivalently on two. Finally, WCRP(β) is about the same as LFA
on Geometry, but substantially better on Fractions. (A comparison between these models
is somewhat inappropriate. LFA has an advantage because it was developed on Geometry
and is provided entire data sets for training, but it has a disadvantage because it was not
designed to improve the performance of BKT.) Surprisingly, WCRP(0), which ignores
the expert-provided skills, performs nearly as well as WCRP(β). Only for Geometry was
WCRP(β) reliably better (two-tailed t-test with t(49) = 5.32, p < .00001). The last
column of Table 1, which shows the mean inferred β value for WCRP(β), helps explain
the pattern of results. The datasets are arranged in order of smallest to largest inferred
β, both in Table 1 and Figure 3. The inferred β values do a good job of indicating where
WCRP(β) outperforms expert: the model infers that the expert skill assignments are
useful for Geometry and Spanish, but less so for the other datasets. Where the expert skill
assignments are most useful, WCRP(0) suffers. On the datasets where WCRP(β) is
highly biased, the mean number of inferred skills (Table 1, column 7) closely corresponds
to the number of expert-provided skills.
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Figure 3: Mean AUC on test students’ data for six different methods of determining skill
assignments in BKT. Error bars show ±1 standard error of the mean.

5 Discussion

We presented a technique that discovers a set of cognitive skills which students use for
problem solving in an instructional domain. The technique assumes that when a student
works on a sequence of exercises requiring the same skill, the student’s expected performance
should monotonically improve. Our technique addresses two challenges simultaneously: (1)
determining which skill is required to correctly answer each exercise, and (2) modeling a
student’s dynamical knowledge state for each skill. We conjectured that a technique which
jointly addresses these two challenges might lead to more accurate predictions of student
performance than a technique which was based on expert skill labels. We found strong
evidence for this conjecture: On 3 of 5 datasets, skill discovery yields significantly improved
predictions over fixed expert-labeled skills; on the other two datasets, the two approaches
obtain comparable results.

Counterintuitively, incorporating expert labels into the prior provided little or no benefit.
Although one expects prior knowledge to play a smaller role as datasets become larger, we
observed that even medium-sized datasets (relative to the scale of today’s big data) are
sufficient to support a pure data-driven approach. In simulation studies with both synthetic
data and actual student datasets, 50-100 students and roughly 10 exercises/skill provides
strong enough constraints on inference that expert labels are not essential.

Why should the expert skill labeling ever be worse than an inferred labeling? After all, edu-
cators design exercises to help students develop particular cognitive skills. One explanation
is that educators understand the knowledge structure of a domain, but have not parsed the
domain at the right level of granularity needed to predict student performance. For exam-
ple, a set of exercises may all tap the same skill, but some require a deep understanding
of the skill whereas others require only a superficial or partial understanding. In such a
case, splitting the skill into two subskills may be beneficial. In other cases, combining two
skills which are learned jointly may subserve prediction, because the combination results
in longer exercise histories which provide more context for prediction. These arguments
suggest that fragmentation-coagulation processes [23] may be an interesting approach to
leveraging expert labelings as a prior.

One limitation of the results we report is that we have yet to perform extensive comparisons
of our technique to others that jointly model the mapping of exercises to skills and the
prediction of student knowledge state. Three matrix factorization approaches have been
proposed, two of which are as yet unpublished [24, 22, 14]. The most similar work to ours,
which also assumes each exercise is mapped to a single skill, is the topical HMM [8, 9]. The
topical HMM differs from our technique in that the underlying generative model supposes
that the exercise-skill mapping is inherently stochastic and thus can change from trial to
trial and student to student. (Also, it does not attempt to infer the number of skills or
to leverage expert-provided skills.) We have initated collaborations with several authors of
these alternative approaches, with the goal of testing the various approaches on exactly the
same datasets with the same evaluation metrics.
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pages 1–198. Springer, Berlin, 1985.

[2] R. Atkinson. Optimizing the learning of a second-language vocabulary. Journal of Experimental
Psychology, 96:124–129, 1972.

[3] T. Barnes. The Q-matrix method: Mining student response data for knowledge. In J. Beck,
editor, Proceedings of the 2005 AAAI Educational Data Mining Workshop, Menlo Park, CA,
2005. AAAI Press.

[4] D. Blei and P. Frazier. Distance dependent Chinese restaurant processes. Journal of Machine
Learning Research, 12:2383–2410, 2011.

[5] H. Cen, K. Koedinger, and B. Junker. Learning factors analysis—A general method for cogni-
tive model evaluation and improvement. In M. Ikeda, K. Ashley, and T. Chan, editors, Intell.
Tutoring Systems, volume 4053 of Lec. Notes in Comp. Sci., pages 164–175. Springer, 2006.

[6] A. Corbett and J. Anderson. Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modeling & User-Adapted Interaction, 4:253–278, 1995.

[7] A. Corbett, K. Koedinger, and J. Anderson. Intelligent tutoring systems. In M. Helander,
T. Landauer, and P. Prabhu, editors, Handbook of Human Computer Interaction, pages 849–
874. Elsevier Science, Amsterdam, 1997.
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